Projected Subgradient Minimization Versus Superiorization
نویسندگان
چکیده
منابع مشابه
Projected Subgradient Minimization Versus Superiorization
The projected subgradient method for constrained minimization repeatedly interlaces subgradient steps for the objective function with projections onto the feasible region, which is the intersection of closed and convex constraints sets, to regain feasibility. The latter poses a computational difficulty and, therefore, the projected subgradient method is applicable only when the feasible region ...
متن کاملString-averaging projected subgradient methods for constrained minimization
We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterati...
متن کاملSubgradient methods for convex minimization
Many optimization problems arising in various applications require minimization of an objective cost function that is convex but not di erentiable. Such a minimization arises, for example, in model construction, system identi cation, neural networks, pattern classi cation, and various assignment, scheduling, and allocation problems. To solve convex but not di erentiable problems, we have to emp...
متن کاملProjected Subgradient Methods for Learning Sparse Gaussians
Gaussian Markov random fields (GMRFs) are useful in a broad range of applications. In this paper we tackle the problem of learning a sparse GMRF in a high-dimensional space. Our approach uses the l1-norm as a regularization on the inverse covariance matrix. We utilize a novel projected gradient method, which is faster than previous methods in practice and equal to the best performing of these i...
متن کاملWeak and Strong Superiorization: Between Feasibility-Seeking and Minimization
We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned by a feasibility-seeking only algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2013
ISSN: 0022-3239,1573-2878
DOI: 10.1007/s10957-013-0408-3